এই অধ্যায়ের শেষে শিক্ষার্থীরা নিম্নোক্ত বিষয়গুলো শিখতে পারবে—
আমাদের চারপাশে কত রকম পদার্থ—মেঘ-সমুদ্র, মাটি-পাথর, ঘরবাড়ি, মানুষজন, গাছপালা, খাল-নদী, পশুপাখি, যন্ত্রপাতি; আমরা আসলে কখনোই সব কিছু বলে শেষ করতে পারব না। তোমরা নিশ্চয়ই মধ্যে মধ্যে অবাক হয়ে ভেবেছ এই লক্ষ-কোটি ধরনের পদার্থ নিশ্চয়ই তৈরি হয়েছে লক্ষ-কোটি উপাদান দিয়ে।
কিন্তু তোমরা শুনে অবাক হয়ে যাবে যখন জানবে এই লক্ষ লক্ষ কোটি কোটি পদার্থ তৈরি হয়েছে মাত্র ৯৮ টি মৌলিক পদার্থ দিয়ে। যে পদার্থ ভাঙলে সেই পদার্থ ছাড়া অন্য কোনো পদার্থ পাওয়া যায় না তাকে মৌলিক পদার্থ বলে। সব মিলিয়ে এখন পর্যন্ত ১১৮টি মৌলিক পদার্থ পাওয়া গেছে কিংবা ল্যাবরেটরিতে তৈরি হয়েছে। কিন্তু ৯৮টির বাইরে যে ২০টি মৌলিক পদার্থ আছে সেগুলো কৃত্রিমভাবে তৈরি হয়েছে এবং প্রকৃতিতে সেগুলোর পরিমাণে এত কম যে সেগুলো বিবেচনা করা না হলেও খুব ক্ষতি হবে না।
কয়েকটি পরিচিত মৌলিক পদার্থ | |
হাইড্রোজেন | Hydrogen |
অক্সিজেন | Oxygen |
লোহা | Iron |
সোনা | Gold |
রুপা | Silver |
কার্বন | Carbon |
ক্লোরিন | Chlorine |
অ্যালুমিনিয়াম | Aluminium |
কিন্তু তোমরা শুনে অবাক হয়ে যাবে যখন জানবে এই লক্ষ লক্ষ কোটি কোটি পদার্থ তৈরি হয়েছে মাত্র ৯৮ টি মৌলিক পদার্থ দিয়ে। যে পদার্থ ভাঙলে সেই পদার্থ ছাড়া অন্য কোনো পদার্থ পাওয়া যায় না তাকে মৌলিক পদার্থ বলে। সব মিলিয়ে এখন পর্যন্ত ১১৮টি মৌলিক পদার্থ পাওয়া গেছে কিংবা ল্যাবরেটরিতে তৈরি হয়েছে। কিন্তু ৯৮টির বাইরে যে ২০টি মৌলিক পদার্থ আছে সেগুলো কৃত্রিমভাবে তৈরি হয়েছে এবং প্রকৃতিতে সেগুলোর পরিমাণে এত কম যে সেগুলো বিবেচনা করা না হলেও খুব ক্ষতি হবে না।
পাশের টেবিলে কিছু পরিচিত মৌলিক পদার্থের নাম দেওয়া হয়েছে। আমরা শ্বাস-প্রশ্বাস নেওয়ার সময় অক্সিজেন গ্রহণ করি। লোহা খুবই পরিচিত একটি ধাতু। অ্যালুমিনিয়ামের বাসন-পত্র তোমরা সবাই দেখেছ। সোনা রুপা দিয়ে গয়না তৈরি করা হয়। হাইড্রোজেন আর অক্সিজেন দিয়ে পানি তৈরি হয়েছে, কাজেই হাইড্রোজেন আর অক্সিজেন মৌলিক পদার্থ হলেও পানি মৌলিক পদার্থ নয়, এটি যৌগিক পদার্থ—যে সকল পদার্থকে ভাঙলে দুই বা দুইয়ের মৌলিক পদার্থ পাওয়া যায় সেগুলোকে যৌগিক পদার্থ বলে। তোমরা পরের অধ্যায়ে এ সম্পর্কে বিস্তারিত জানতে পারবে।
তোমরা যারা যারা ভাবছ এই ৯৮টি মৌলিক পদার্থের তালিকাটা পেলেই এই পৃথিবীর সব কিছু কী দিয়ে তৈরি হয়েছে তুমি তার পূর্ণাঙ্গ তালিকা পেয়ে যাবে সেগুলোর জন্য আরও সুসংবাদ আছে। এই মৌলিক পদার্থগুলো তৈরি হয়েছে সেগুলোর ‘পরমাণু' দিয়ে এবং সেই পরমাণুগুলো তৈরি হয়েছে মাত্র তিনটি কণা দিয়ে, সেগুলোর নাম হচ্ছে ইলেকট্রন, প্রোটন এবং নিউট্রন।
কাজেই এটা মোটেও অতিরঞ্জন নয় যে তোমাদের চারপাশের পুরো পরিচিত জগৎ তৈরি হয়েছে মাত্র তিনটি মৌলিক কণা দিয়ে। সেজন্য এ পুরো বিশ্ব জগৎ কীভাবে তৈরি হয়েছে সেটা বুঝতে চাইলে সবার আগে জানতে হবে ইলেকট্রন, প্রোটন আর নিউট্রন দিয়ে কীভাবে এই ভিন্ন ভিন্ন মৌলিক পদার্থের পরমাণুগুলো তৈরি হয়।
ইলেকট্রন, প্রোটন আর নিউট্রন দিয়ে তৈরি মৌলিক পদার্থের সবচেয়ে ছোট একক হচ্ছে পরমাণু।
পরমাণুগুলো এত ছোট যে তোমরা কখনই সেগুলো দেখতে পাও না, কিন্তু যদি দেখার উপায় থাকতো তাহলে দেখতে পরমাণুগুলোর মাঝখানে আছে প্রোটন আর নিউট্রন দিয়ে তৈরি খুবই ছোট একটি নিউক্লিয়াস এবং সেটিকে ঘিরে ঘুরছে ইলেকট্রন! এই যে এক লাইনে তোমাদেরকে পরমাণু গঠনের কথা বলে দেওয়া হলো তোমরা চিন্তাও করতে পারবেনা কত হাজার বছর ধরে কত শত বিজ্ঞানী কত গবেষণা করে এটা শেষ পর্যন্ত বের করতে পেরেছিলেন।
যখনই দেখা যায় কিছু একটা ঘুরছে তখনই বুঝে নিতে হবে কোনো একটা বল সেটিকে নিজের দিকে টানছে। সূর্য পৃথিবীকে টানছে বলে পৃথিবী সূর্যের চারদিকে ঘুরছে, পৃথিবী চাঁদকে টানছে বলে চাঁদ পৃথিবীকে ঘিরে ঘুরছে। ঠিক সেরকম পরমাণুর মাঝখানে থাকা খুবই ছোট নিউক্লিয়াস ইলেকট্রনকে নিজের দিকে টানছে বলে ইলেকট্রন নিউক্লিয়াসকে ঘিরে ঘুরছে।
এখন প্রশ্ন হলো পরমাণুর ভেতরকার খুবই ছোট নিউক্লিয়াস কেন ইলেকট্রনকে নিজের দিকে টানছে? তার কারণ হচ্ছে, বৈদ্যুতিক আকর্ষণ। নিউট্রনের কোনো চার্জ নেই সত্যি; কিন্তু প্রোটনের চার্জ পজিটিভ, তাই নিউক্লিয়াসের মোট চার্জ সবসময় পজিটিভ। অন্যদিকে ইলেকট্রনের চার্জ নেগেটিভ এবং বৈদ্যুতিক বলের বৈশিষ্ট্য হচ্ছে বিপরীত চার্জ একে অপরকে আকর্ষণ করে (এবং এক ধরনের চার্জ একে অন্যকে বিকর্ষণ করে)। তাই নিউক্লিয়াসের আকর্ষণে ইলেকট্রন তাকে ঘিরে ঘোরে। এই বৈদ্যুতিক বল এবং শক্তির কথা তোমরা পরে আরও পড়বে, আরও অনেক কিছু জানবে এবং অনেকভাবে ব্যবহার করবে। আপাতত জেনে রাখো একটা পরমাণুর ভেতরে ইলেকট্রনের নেগেটিভ এবং প্রোটনের পজিটিভ চার্জ দিয়েই সবকিছু শুরু।
বলা যেতে পারে, আমরা এখন পরমাণুর গঠনের মূল বিষয়টি জেনে গেছি। একটা পরমাণুর মাঝখানে থাকে প্রোটন আর নিউট্রন দিয়ে তৈরি খুবই ছোট একটা নিউক্লিয়াস; যেখানে প্রোটনের চার্জ পজিটিভ এবং নিউট্রনের কোনো চার্জ নেই। এই নিউক্লিয়াসকে ঘিরে ঘোরে ইলেকট্রন। কারণ, ইলেকট্রনের চার্জ নেগেটিভ এবং নিউক্লিয়াসে পজিটিভ চার্জের প্রোটনগুলো ইলেকট্রনগুলোকে নিজের দিকে আকর্ষণ করে।
পারমাণবিক সংখ্যা: এই অধ্যায়ের শুরুতে বলা হয়েছে এখন পর্যন্ত ১১৮টি মৌলিক পদার্থ পাওয়া গেছে। এই ১১৮ টি মৌলিক পদার্থের রয়েছে ১১৮টি ভিন্ন ভিন্ন পরমাণু। পরমাণুগুলোর মধ্যে পার্থক্য কী? কীভাবে সেগুলোকে আলাদা করা হয়?
আসলে সেই পদ্ধতিটি খুবই সহজ! তালিকার প্রথম পরমাণুর নিউক্লিয়াসের মধ্যে একটা প্রোটন, কাজেই বাইরে একটা ইলেকট্রন। তার নাম হাইড্রোজেন। এর পরের পরমাণুর নিউক্লিয়াসের দুইটা প্রোটন (এবং দুইটা নিউট্রন) এবং বাইরে দুইটা ইলেকট্রন, তার নাম হিলিয়াম। এর পরের পরমাণুর নিউক্লিয়াসে তিনটা প্রোটন (এবং তিনটা নিউট্রন) কাজেই তার বাইরে তিনটা ইলেকট্রন, তার নাম হচ্ছে লিথিয়াম। এভাবে নিউক্লিয়াসে একটা করে প্রোটন, বাইরে একটা করে ইলেকট্রন বেড়েছে এবং এখন পর্যন্ত পাওয়া সর্বশেষ পরমাণু নিউক্লিয়াস ১১৮ টি প্রোটন এবং বাইরে ১১৮ টি ইলেকট্রন (এবং নিউক্লিয়াসে যতগুলো প্রোটন তার সমান কিংবা বেশি নিউট্রন)। একটি পরমাণুর নিউক্লিয়াসে যে কয়টি প্রোটন থাকে, সেটিই হচ্ছে সেই পরমাণুর পারমাণবিক সংখ্যা।
তোমরা নিশ্চয়ই বুঝতে পেরেছ একটা পরমাণুতে যে কয়টি প্রোটন থাকে বাইরে ঠিক সেই কয়টি ইলেকট্রন থাকতে হয় কারণ প্রোটন আর ইলেকট্রনের চার্জ সমান, শুধু একটা পজিটিভ অন্যটা নেগেটিভ। কাজেই দুটোর সংখ্যা সমান সমান হলে পজিটিভ এবং নেগেটিভ মিলে মোট চার্জের পরিমাণ শূন্য কিংবা চার্জ বিহীন হয়! তোমাদের মনে হতে পারে, নিউট্রনের যেহেতু চার্জ নেই; তাই তার সংখ্যা কম বেশি হলে কিছু আসে যায় না কিন্তু তারপরও নিউক্লিয়াসের ভেতরে যতগুলো প্রোটন তার সমান কিংবা বেশি নিউট্রন থাকতে হয়, তার একটা খুব গুরুত্বপূর্ণ কারণ আছে, যেটি তোমরা একটু পরেই জানতে পারবে।
ইলেকট্রন বিন্যাস: আমরা বলেছি একটা পরমাণুর নিউক্লিয়াসে যে কয়টি প্রোটন থাকে বাইরে ঠিক ততগুলো ইলেকট্রন থাকে। স্বাভাবিক ভাবেই আমরা জানতে চাইব সেগুলো কীভাবে থাকে? সবগুলো ইলেকট্রন কি এক জায়গায় এলোমেলোভাবে থাকে নাকি সৌরজগতে একেকটি কক্ষপথে যেরকম একেকটি করে গ্রহ থাকে সেভাবে থাকে?
ইলেকট্রনগুলো আসলে মোটেও এলোমেলোভাবে থাকে না, সেগুলো নিউক্লিয়াস থেকে নির্দিষ্ট দূরত্বে নির্দিষ্ট কক্ষপথে থাকে। তবে এক কক্ষপথে একটি মাত্র ইলেকট্রন থাকে না, আরো বেশি সংখ্যক থাকে, এবং একটি কক্ষপথে কয়েকটি ইলেকট্রন থাকবে, সেটিও পদার্থবিজ্ঞানের সূত্র নির্দিষ্ট করে দিয়েছে। শুধু তোমরা জেনে রাখো একটি ইলেকট্রন কোন কক্ষপথ আছে তার ওপর সেই ইলেকট্রনের শক্তি নির্ভর করে। কাজেই কক্ষপথগুলো শক্তির স্তর হিসেবে কল্পনা করা যায়। যেমন আমরা যদি একটা সোনার পরমাণুর কথা চিন্তা করি, তার ভেতরে কক্ষপথের ইলেকট্রন খুবই শক্তভাবে নিউক্লিয়াসে আকর্ষণে আবদ্ধ থাকে। তাই সেটিকে সরাতে হলে অনেক শক্তি দিতে হয়। আবার বাইরের কক্ষপথের ইলেকট্রনগুলো খুবই দুর্বলভাবে আবদ্ধ থাকে—খুব সহজেই সেগুলোকে মুক্ত করে নেওয়া যায়! বিদ্যুৎ পরিবহনের জন্য মুক্ত ইলেকট্রনের দরকার হয়, সেজন্য সোনা খুবই ভালো বিদ্যুৎ পরিবাহী।
কাজেই এখন তোমরা মোটামুটিভাবে দুটো বিষয় বলতে পারবে। একটা পরমাণুর ইলেকট্রন সংখ্যা যত বেশি হবে তার ইলেকট্রনগুলো সাজানোর জন্য বেশি কক্ষপথের প্রয়োজন হবে বলে তার আকার তত বড়। আবার একেবারে বাইরের কক্ষপথের ইলেকট্রনগুলো কীভাবে আছে, সেটাই তার ধর্মকে নির্ধারণ করে। সেজন্য কোনো কোনো পরমাণু হচ্ছে ধাতু, কোনোটি অধাতু, কোনোটি গ্যাস কোনোটি তরল কিংবা কঠিন, কোনোটি নিস্ক্রিয় আবার কোনোটা অত্যন্ত বিক্রিয়াশীল।
তোমরা নিশ্চয়ই লক্ষ করেছ যে নিউক্লিয়াসের কথা বলার সময় প্রতিবার তোমাদের মনে করিয়ে দেওয়া হয়েছে যে নিউক্লিয়াসটা খুবই ছোট। পরমাণুর তুলনায় সেটি কত ছোট শুনলে তোমরা নিঃসন্দেহে হতবাক হয়ে যাবে। একটা পরমাণুর ব্যাসার্ধ থেকে নিউক্লিয়াসের ব্যাসার্ধ প্রায় লক্ষ গুণ ছোট কাজেই আয়তনের হিসেবে সেটি লক্ষ × লক্ষ × লক্ষ গুণ বেশি ছোট! বলতে পারো একটা পরমাণুর ভেতরে বলতে গেলে পুরোটাই ফাঁকা, পৃথিবীটাকে চাপ দিয়ে যদি এই ফাঁকা জায়গাটা ভরাট করে ফেলা যেত তাহলে পুরো পৃথিবীটাকে একটা ফুটবল মাঠে রেখে দেওয়া যেত!
কাজেই নিউক্লিয়াসের ভেতর খুবই একটা ছোট জায়গায় প্রোটনগুলোকে গাদাগাদি করে থাকতে হয়! কিন্তু তোমরা এর মধ্যে জেনে গেছ যে বৈদ্যুতিক বলের বেলায় বিপরীত চার্জ পরস্পরকে আকর্ষণ করলেও একই চার্জ পরস্পরকে বিকর্ষণ করে। কাজেই একটা নিউক্লিয়াসের ভেতর গাদাগাদি করে থাকা পজিটিভ চার্জের প্রোটনগুলো পরস্পরকে প্রচণ্ডবলে বিকর্ষণ করে। এই বিকর্ষণ কমানোর জন্য নিউক্লিয়াসে সবসময়ই প্রোটনের সমান সংখ্যক কিংবা আরো বেশি নিউট্রন থাকে। একটি নির্দিষ্ট মৌলিক পদার্থের পরমাণুতে কয়টি ইলেকট্রন এবং কয়টি প্রোটন থাকে সেটি নির্দিষ্ট থাকলেওনিউট্রনের সংখ্যা কিন্তু একেবারে সুনির্দিষ্ট নয়, সেটি কম কিংবা বেশি হতে পারে। একই মৌলিক পদার্থের ভিন্ন ভিন্ন সংখ্যক নিউট্রন পাওয়া যেতে পারে, সেগুলোর একটিকে আরেকটির আইসোটপ বলে, উপরের ক্লাসে তোমরা সেগুলো আরো বিস্তৃতভাবে জানবে। শুধু একটি পরমাণুর নিউক্লিয়াসে কোনো নিউট্রন নেই। সেই নিউক্লিয়াসে বিকর্ষণ করার জন্য দ্বিতীয় প্রোটনও নেই, নিশ্চয়ই বুঝতে পারছ সেটি হচ্ছে হাইড্রোজেনের পরমাণু।
একটা নিউট্রনের ভর এবং প্রোটনের ভর খুবই কাছাকাছি এবং সেটি ইলেক্ট্রনের ভর থেকে দুই হাজার গুণ বেশি। অর্থাৎ ইলেকট্রন এত হালকা যে আসলে পরমাণুর ভর হচ্ছে তার নিউট্রন এবং প্রোটন কিংবা নিউক্লিয়াসের ভর।
তেজস্ক্রিয়তা: আমরা এই অধ্যায়ে শুরুতে বলেছি, যদিও এখন পর্যন্ত ১১৮টি পরমাণু পাওয়া সম্ভব হয়েছ তার ভেতর ৯৮টি স্থিতিশীল, অন্যগুলো কৃত্রিমভাবে তৈরি এবং সেগুলো অস্থিতিশীল। আমরা যখন একটি পরমাণুকে অস্থিতিশীল বলি, তখন বুঝিয়ে থাকি তার নিউক্লিয়াসটি অস্থিতিশীল।
তোমরা এর মধ্যে জেনে গেছ প্রচণ্ড বৈদ্যুতিক বিকর্ষণের জন্য শুধু প্রোটন দিয়ে নিউক্লিয়াস তৈরি হতে পারে না। তার মধ্যে প্রায় সমান সংখ্যক কিংবা আরো বেশি নিউট্রন থাকতে হয়। তারপরেও অনেক সময় নিউক্লিয়াসগুলো স্থিতিশীল হয় না; এবং নানা ধরনের রশ্মি বিকরণ করে। এই ধরনের নিউক্লিয়াসগুলোকে আমরা তেজস্ক্রিয় নিউক্লিয়াস বলে থাকি। নিউক্লিয়ার বোমার বিস্ফোরণের সময় এই ধরনের তেজস্ক্রিয় রশ্মি বের হয়ে মানুষের জীবনের ভয়াবহ সর্বনাশ করে থাকে।
তেজস্ক্রিয় নিউক্লিয়াসগুলো থেকে যে রশ্মিগুলো বের হয়, সেগুলোর নাম আলফা, বেটা এবং গামা রশ্মি। এই রশ্মিগুলোর গঠন এবং বৈশিষ্ট্য তোমরা একটু উপরের ক্লাসে গিয়ে জানতে পারবে।
তোমরা সবাই এর মধ্যে জেনে গেছ যে আমাদের চারপাশে যা কিছু আছে, সেগুলো তৈরি হয়ে মাত্র ৯৮ টি প্রাকৃতিকভাবে পাওয়া পরমাণু দিয়ে। এই পরমাণুগুলোর গঠনও তোমরা এখন জানো, কেন্দ্রে খুবই ক্ষুদ্র একটি নিউক্লিয়াস এবং সেটিকে ঘিরে ঘুরছে ইলেকট্রন। ইলেকট্রনগুলো বিভিন্ন কক্ষপথে নিয়মমাফিক সাজানো থাকে, শেষ কক্ষপথে যে ইলেকট্রনগুলো থাকে, সেই ইলেকট্রন গুলোই আসলে পরমাণুর ধর্ম নির্ধারিত হয়। তাই কোনো কোনো পরমাণু একেবারে নিষ্ক্রিয়, আবার কোনো কোনো পরমাণু ভয়াবহ রকমের সক্রিয়। পরমাণু দিয়ে কীভাবে অণু তৈরি হয়, সেটি যখন পড়বে তখন তোমরা সেই বিষয়গুলো আরো ভালোভাবে জানতে পারবে।
যাই হোক পরমাণুর শেষ কক্ষপথে বৈশিষ্ট্য দিয়ে আমরা বেশ কিছু পরমাণুকে দুই ভাগে ভাগ করেছি, সেটি হচ্ছে ধাতু এবং অধাতু। তোমরা সবাই নিশ্চয়ই মোটামুটিভাবে এই দুটি শব্দের সঙ্গে পরিচিত। সোনা রুপা লোহা তামা এগুলো হচ্ছে ধাতুর উদাহরণ। ধাতুর বেশ কয়েকটি বৈশিষ্ট্য আছে, তার মধ্যে সবচেয়ে পরিচিত বৈশিষ্ট্য হচ্ছে এগুলো তাপ এবং বিদ্যুৎ পরিবাহী। তোমরা এখন যেহেতু পরমাণুর গঠন সম্পর্কে জেনে গেছ, তাই ধাতুগুলো কেন বিদ্যুৎ এবং তাপ পরিবাহী হয়, সেটিও এখন ব্যাখ্যা করতে পারবে। ধাতু জাতীয় পরমাণুগুলোর শেষ কক্ষপথে যে ইলেকট্রন থাকে সেগুলো সাধারণত খুব দুর্বলভাবে আটকে থাকে বা ‘প্রায়-মুক্ত’, খুব সহজেই সেটি এক পরমাণু থেকে অন্য পরমাণুতে যেতে পারে। যেহেতু তাপ এবং বিদ্যুৎ পরিবহন হয় এই ইলেকট্রন দিয়ে তাই ধাতুর পরমাণুতে যে প্রায়-মুক্ত ইলেকট্রন থাকে, সেগুলো দিয়ে খুব সহজে বিদ্যুৎ পরিবহন করা যায়।
কাজেই তোমরা একেবারে অধাতুর বৈশিষ্ট্য ব্যাখ্যা করতে পারবে। অধাতুর পরমাণুর শেষ কক্ষপথে প্রায় মুক্ত কোনো ইলেকট্রন নেই, তাই সেখানে বিদ্যুৎ প্রবাহিত করার জন্য কোনো ইলেকট্রন নেই। সালফার (গন্ধক), ফসফরাস, নাইট্রোজেন, এগুলো হচ্ছে অধাতুর উদাহরণ।
পরিবাহী এবং অপরিবাহী পরমাণু ছাড়াও কিছু পরমাণুকে অর্ধপরিবাহী বা ইংরেজিতে সেমিকন্ডাক্টর বলে। ধাতু বিদ্যুৎ পরিবাহী, তাই সেগুলোকে কন্ডাক্টর বলা হয়। কাজেই সেমিকন্ডাক্টর শব্দটি থেকেই বুঝতে পারছ এগুলো এমন এক ধরনের পরমাণু, যেগুলো পুরোপুরি পরিবাহী নয়, বিশেষ অবস্থায় এগুলো পরিবাহী হতে পারে, সেজন্য এগুলোকে বাংলায় অর্ধপরিবাহী বা ইংরেজিতে সেমিকন্ডাক্টর বলে ।
তোমরা যেহেতু পরমাণুর গঠন জেনে গেছ তাই এখন ইচ্ছা করলে এই অর্ধপরিবাহী বা সেমিকন্ডাক্টর গঠনটিও ব্যাখ্যা করতে পারবে। এ ধরনের পরমাণুতে শেষ কক্ষপথে বিদ্যুৎপ্রবাহ করার জন্য প্রায়-মুক্ত কোনো ইলেকট্রন থাকে না। কিন্তু যদি পরমাণুরকে উত্তপ্ত করা যায় তাহলে তাপশক্তি পরমাণুটির শেষ কক্ষপথ থেকে একটি ইলেকট্রনকে প্রায় মুক্ত করে নিয়ে আসতে পারে। সেই প্রায়-মুক্ত ইলেকট্রনটি বিদ্যুৎ প্রবাহিত করতে পারে অর্থাৎ অন্যভাবে বলা যায়, কোনো কোনো বিশেষ ধরনের বিদ্যুৎ অপরিবাহী পরমাণুকে উত্তপ্ত করে বিদ্যুৎ পরিবাহী পরমাণুতে রূপান্তরিত করা যায়। এই ধরনের পরমাণুকে অর্ধপরিবাহী বা সেমিকন্ডাক্টর বলে। সিলিকন হচ্ছে সবচেয়ে বেশি ব্যবহৃত একটি সেমিকন্ডাক্টর বা অর্ধপরিবাহী পরমাণু।
বর্তমান সভ্যতায় একটি খুবই গুরুত্বপূর্ণ ভূমিকা রেখেছে ইলেকট্রনিকস। সেমিকন্ডাক্টর ছাড়া এই ইলেকট্রনিকস প্রযুক্তিটি এত চমৎকারভাবে কখনোই গড়ে তোলা সম্ভব হতো না।
বাংলা ভাষায় বর্ণমালা মাত্র ৫০টি ভিন্ন ভিন্ন বর্ণ কিন্তু এই ৫০টি বর্ণ দিয়ে অসংখ্য শব্দ তৈরি করা যায়। ঠিক একইভাবে মাত্র ১১৮টি ভিন্ন ভিন্ন পরমাণু; কিন্তু সেগুলো দিয়ে অসংখ্য অণু তৈরি করা যায় এবং এই অণুগুলোই হচ্ছে পদার্থের ক্ষুদ্রতম একক, যেখানে যৌগিক পদার্থের সব গুণাবলি আছে। দুই বা দুইয়ের অধিক পরমাণু যদি রাসায়নিক বন্ধনের মাধ্যমে পরস্পরের সঙ্গে যুক্ত থাকে, তাহলে সেটাকে অণু বলে।
উদাহরণ দেওয়ার জন্য বলা যায়, পানি তৈরি হয়েছে অক্সিজেন এবং হাইড্রোজেন গ্যাস দিয়ে। আমরা যদি এক ফোঁটা পানি নিয়ে সেটাকে বিভক্ত করতে থাকি তাহলে শেষ পর্যন্ত আমরা পানির একটি অণুতে পৌঁছাব, সেখানে পানির গুণাবলি পাওয়া যাবে। যদি সেটিকে আরো বিভক্ত করার চেষ্টা করি তাহলে সেটি আর পানির অণু থাকবে না, সেটি দুইটি হাইড্রোজেন এবং একটি অক্সিজেনের পরমাণুতে বিভক্ত হয়ে যাবে। মৌলিক পদার্থ এবং যৌগিক পদার্থ দুইটিরই অণু থাকা সম্ভব। আমাদের পরিচিত হাইড্রোজেন, অক্সিজেন বা নাইট্রোজেন গ্যাসের বেলায় সেগুলো আলাদা আলাদা পরমাণু হিসেবে থাকে না, সব সময় দুইটি পরমাণু একত্র হয়ে একটি অণু হিসেবে থাকে।
পরমাণুগুলো সাধারণত মুক্তভাবে থাকে না, সেগুলো অন্য পরমাণুর সঙ্গে যুক্ত হয়ে অণু কিংবা যৌগিক পদার্থ হিসেবে থাকে। তবে এর মধ্যে কিছু ব্যতিক্রম আছে। তোমরা এর মধ্যে জেনে গেছ, পরমাণুর শেষ কক্ষপথে ইলেকট্রনের বিন্যাস দিয়েই পরমাণু কতটুকু সক্রিয় হবে সেটি নির্ধারিত হয়। পরমাণুর বিভিন্ন কক্ষপথে কয়টি করে ইলেকট্রন থাকবে, সেটি পদার্থবিজ্ঞানের নিয়ম দিয়ে নির্ধারিত আছে। কাজেই শেষ কক্ষপথে যে কয়টি ইলেকট্রন থাকা সম্ভব, যদি তার সবগুলোই পূর্ণ হয়ে যায়, তাহলে সেই পরমাণুটি অন্য পরমাণুর সঙ্গে ইলেকট্রন বিনিময় করে সেগুলোর সঙ্গে যুক্ত হতে চায় না। কাজেই সেই পরমাণুগুলো নিষ্ক্রিয় পরমাণু বলা হয় এবং সেগুলো গ্যাস হিসেবে থাকে। হিলিয়াম, আর্গন, নিয়ন, জিনন ইত্যাদি হচ্ছে এই ধরনের নিষ্ক্রিয় গ্যাসের উদাহরণ। এই গ্যাসগুলো অন্য পরমাণুর সঙ্গে যুক্ত হয়ে অণু কিংবা যৌগিক পদার্থ না হয়ে মুক্ত পরমাণু হিসেবেই থেকে যায়।
আবার মৌলিক পদার্থের অনেক পরমাণু একসঙ্গে থাকলেই কিন্তু সেগুলো দিয়ে সবসময় অণু গঠিত হয় না। সোনা, রুপা বা লোহা এরকম ধাতুগুলোতে পরমাণুগুলো কঠিনভাবে সংযুক্ত থাকে এবং সেগুলোর বাইরের কক্ষপথের প্রায় মুক্ত ইলেকট্রনগুলো সব পরমাণুর ভেতর ঘুরে বেড়ায়, কিন্তু সেগুলো কোনো অণু তৈরি করে না। আবার হীরার কেলাসেও কার্বনের অণুগুলো পরস্পরের সঙ্গে যুক্ত থেকে স্ফটিক তৈরি করে, কিন্তু কোনো অণু তৈরি হয় না।
সেটিকে আরো বিভক্ত করার চেষ্টা করি তাহলে সেটি আর পানির অণু থাকবে না, সেটি দুইটি হাইড্রোজেন এবং একটি অক্সিজেনের পরমাণুতে বিভক্ত হয়ে যাবে।
মৌলিক পদার্থ এবং যৌগিক পদার্থ দুইটিরই অণু থাকা সম্ভব। আমাদের পরিচিত হাইড্রোজেন, অক্সিজেন বা নাইট্রোজেন গ্যাসের বেলায় সেগুলো আলাদা আলাদা পরমাণু হিসেবে থাকে না, সব সময় দুইটি পরমাণু একত্র হয়ে একটি অণু হিসেবে থাকে।
পরমাণুগুলো সাধারণত মুক্তভাবে থাকে না, সেগুলো অন্য পরমাণুর সঙ্গে যুক্ত হয়ে অণু কিংবা যৌগিক পদার্থ হিসেবে থাকে। তবে এর মধ্যে কিছু ব্যতিক্রম আছে। তোমরা এর মধ্যে জেনে গেছ, পরমাণুর শেষ কক্ষপথে ইলেকট্রনের বিন্যাস দিয়েই পরমাণু কতটুকু সক্রিয় হবে সেটি নির্ধারিত হয়। পরমাণুর বিভিন্ন কক্ষপথে কয়টি করে ইলেকট্রন থাকবে, সেটি পদার্থবিজ্ঞানের নিয়ম দিয়ে নির্ধারিত আছে। কাজেই শেষ কক্ষপথে যে কয়টি ইলেকট্রন থাকা সম্ভব, যদি তার সবগুলোই পূর্ণ হয়ে যায়, তাহলে সেই পরমাণুটি অন্য পরমাণুর সঙ্গে ইলেকট্রন বিনিময় করে সেগুলোর সঙ্গে যুক্ত হতে চায় না। কাজেই সেই পরমাণুগুলো নিষ্ক্রিয় পরমাণু বলা হয় এবং সেগুলো গ্যাস হিসেবে থাকে। হিলিয়াম, আর্গন, নিয়ন, জিনন ইত্যাদি হচ্ছে এই ধরনের নিষ্ক্রিয় গ্যাসের উদাহরণ। এই গ্যাসগুলো অন্য পরমাণুর সঙ্গে যুক্ত হয়ে অণু কিংবা যৌগিক পদার্থ না হয়ে মুক্ত পরমাণু হিসেবেই থেকে যায়।
আবার মৌলিক পদার্থের অনেক পরমাণু একসঙ্গে থাকলেই কিন্তু সেগুলো দিয়ে সবসময় অণু গঠিত হয় না। সোনা, রুপা বা লোহা এরকম ধাতুগুলোতে পরমাণুগুলো কঠিনভাবে সংযুক্ত থাকে এবং সেগুলোর বাইরের কক্ষপথের প্রায় মুক্ত ইলেকট্রনগুলো সব পরমাণুর ভেতর ঘুরে বেড়ায়, কিন্তু সেগুলো কোনো অণু তৈরি করে না। আবার হীরার কেলাসেও কার্বনের অণুগুলো পরস্পরের সঙ্গে যুক্ত থেকে স্ফটিক তৈরি করে, কিন্তু কোনো অণু তৈরি হয় না।
পদার্থের একটি ভর আছে এবং এটি খানিকটা জায়গা দখল করে থাকে। সাধারণ তাপমাত্রায় কোনো কোনো পদার্থ কঠিন, কোনো কোনো পদার্থ তরল আবার কোনো কোনো পদার্থ গ্যাসীয় অবস্থায় থাকে। তাপমাত্রা পরিবর্তন করে একই পদার্থকে কখনো কঠিন, কখনো তরল বা কখনো গ্যাসীয় অবস্থায় রূপান্তর করা যায়। তোমরা একটু আগেই জানতে পেরেছ যে অণু, পরমাণু নামে খুবই ক্ষুদ্র একধরনের কণা দিয়ে পদার্থ তৈরি। এই কণাগুলো একটা পদার্থে কীভাবে থাকে, তার ওপর নির্ভর করে সেটি কি কঠিন তরল নাকি গ্যাস। এর একটা পরিচিত উদাহরণ হচ্ছে পানি, যেটি একই পদার্থ কিন্তু ভিন্ন ভিন্ন তাপমাত্রার কঠিন, তরল কিংবা গ্যাস হিসেবে থাকতে পারে, তার অণুগুলোর অবস্থার উপর নির্ভর করে এটি কি বরফ পানি নাকি জলীয় বাষ্প ।
কঠিন: কঠিন পদার্থের কণাগুলো খুব কাছাকাছি এবং নির্দিষ্ট অবস্থানে থাকে, একটির সাপেক্ষে অন্যটি নড়তে পারে না তাই কঠিন পদার্থের নির্দিষ্ট আকার হয়। কাছাকাছি থাকার কারণে কঠিন পদার্থের উপর চাপ প্রয়োগ করলে এগুলো সংকুচিত হয় না এবং গ্যাস কিংবা তরলের মতো প্রবাহিত করা যায় না।
তরল: পদার্থ যখন তরল অবস্থায় থাকে তখন কণাগুলো তুলনামূলকভাবে কাছে হলেও একটা কণা অন্য কণার সাপেক্ষে নড়তে পারে, তাই সেগুলোর নির্দিষ্ট আয়তন থাকলেও কোনো নিয়মিত আকার নেই এবং তরল সহজেই প্রবাহিত হয়। তরল পদার্থকে যে পাত্রে রাখা হয় তরল পদার্থ সেই পাত্রের আকার ধারণ করে। তরল পদার্থের কণাগুলো কাছাকাছি থাকায় সেগুলোর মধ্যে ফাঁকা জায়গা নেই বলে চাপ দিয়ে সংকুচিত করা যায় না।
গ্যাস: যখন কোনো পদার্থ গ্যাস অবস্থায় থাকে, তখন তার কণাগুলো মুক্ত অবস্থায় থাকে এবং একটি থেকে অন্যটির দূরত্ব হয় বেশি। সেজন্য সেগুলোর কোনো নিয়মিত আকার বা আয়তন নেই, গ্যাসকে যে পাত্রে রাখা হয়, সেই পাত্রের পুরো আয়তন দখল করে। গ্যাসের কণাগুলোর মাঝখানে অনেক জায়গা বলে চাপ প্রয়োগ করে এগুলোকে সহজেই সংকুচিত করা যায়। গ্যাসের কণাগুলো অন্য কণার সাপেক্ষে ছুটতে পারে বলে গ্যাস সহজেই প্রবাহিত হয়।
১। ১ চা চামুচে আনুমানিক ১ সিসি পদার্থ আঁটে। এক লিটার পানির ভর এক কেজি কাজেই ১ সিসি পানির ওজন ১ গ্রাম। তাহলে অনুমান করতে পারবে এক চা চামচ পানির নিউক্লিয়াসের ভর কত?
২। তুমি যদি পারমাণবিক সংখ্যা ১১৯ নম্বর পরমাণুটি আবিষ্কার করতে পারো তাহলে তার নাম কি দিবে? কেন?