যে পদ্ধতি সংখ্যা গণনা করা হয় বা প্রকাশ করা হয়, তাকে সংখ্যা পদ্ধতি বলে। এ সকল সংখ্যাকে বিভিন্ন গাণিতিক প্রক্রিয়ার মাধ্যমে প্রয়ােজনীয় গণনার কাজ করা হয়।
প্রকারভেদঃ
১. ডেসিমেল বা দশমিক সংখ্যা পদ্ধতি
২. বাইনারি সংখ্যা পদ্ধতি
৩. অক্টাল সংখ্যা পদ্ধতি
৪. হেক্সাডেসিমেল সংখ্যা পদ্ধতি
নাম |
বৈশিষ্ট্য |
ডেসিমেল বা দশমিক সংখ্যা |
দশমিক সংখ্যা পদ্ধতিতে ০,১,২,৩,৪,৫,৬,৭,৮ এবং ৯ এই দশটি প্রতীক দিয়ে সব ধরণের সংখ্যা গঠন করা হয়। দশটি প্রতীক বা অংক ব্যবহার করা হয় বলে এ সংখ্যা পদ্ধতিকে বলা হয় দশমিক সংখ্যা পদ্ধতি। এ সংখ্যা পদ্ধতির ভিত্তি হচ্ছে ১০। *দশমিক পদ্ধতির ক্ষেত্রে একক, দশক, শতক এভাবে কোন সংখ্যার মান নির্ণয় করতে হয়। পূর্ণ দশমিক সংখ্যার স্থানীয় মান নির্ণয় করতে সংখ্যার ডানদিক থেকে প্রথম ঘরের মান ১০° (=১) , দ্বিতীয় ঘরের মান ১০১ (=১০), তৃতীয় ঘরের মান ১০২ (=১০০) , চতুর্থ ঘরের মান ১০৩(=১০০০) |
বাইনারি সংখ্যা পদ্ধতি |
শূন্য (০) এবং (১) এর অন্তহীন সমবায়ে গঠিত বাইনারী সিস্টেম। বাইনারীতে কেবল দুটি ডিজিট বা প্রতীক ব্যবহৃত হয়। সপ্তদশ শতাব্দীর প্রথমভাগে টমাস হ্যারিয়ট প্রথম বাইনারী সংখ্যা কাজে লাগান। |
অক্টাল সংখ্যা পদ্ধতি |
যে সকল সংখ্যা যে সংখ্যা পদ্ধতিতে আটটি অংক বা চিহ্ন ব্যবহার করা হয় তাকে অক্টাল সংখ্যা পদ্ধতি বলে। |
হেক্সাডেসিমেল সংখ্যা পদ্ধতি। |
যে সংখ্যা পদ্ধতিতে ষােলটি অংক বা চিহ্ন ব্যবহার করা হয় তাকে অকাল। +এ পদ্ধতিতে ব্যবহৃত অংকগুলাে হলাে ০, ১, ২, ৩, ৪, ৫, ৬, ৭, ৮, ৯, A, B, C, D, E, F |
খ্রিস্টপূর্ব ৩৪০০ সালে হায়ারোগ্লিফিক্স সংখ্যা পদ্ধতির মাধ্যমে সর্বপ্রথম গণনার ক্ষেত্রে লিখিত সংখ্যা বা চিহ্নের ব্যবহার শুরু হয়। পরবর্তিতে পর্যায়ক্রমে মেয়ান, রোমান ও দশমিক সংখ্যা পদ্ধতির ব্যবহার শুরু হয়।
সংখ্যাঃ সংখ্যা হচ্ছে এমন একটি উপাদান যা কোনকিছু গণনা, পরিমাণ এবং পরিমাপ করার জন্য ব্যবহৃত হয়।
গাণিতিক কাজে সংখ্যার মান বোঝানোর জন্য ধনাত্মক ও ঋণাত্মক অবস্থা ব্যবহৃত হয়!! ফলে ধনাত্মক ও ঋণাত্মক সংখ্যা বোঝানোর জন্য যথাক্রমে + ও – চিহ্ন ব্যবহার করা হয়!! এই + বা – যুক্ত সংখ্যাকেই চিহ্নযুক্ত সংখ্যা বলে!!
বিসিডি কোড (BCD Code): বিসিডি (BCD) কোডের পূর্ণ অর্থ হচ্ছে বাইনারি কোডেড ডেসিমাল (Binary Coded Decimal)। কোনাে দশমিক সংখ্যাকে বাইনারি সংখ্যায় কিংবা বাইনারি সংখ্যাকে দশমিক সংখ্যায় রূপান্তর করার পদ্ধতি সহজতর করার জন্য বিসিডি কোড ব্যবহার করা হয়। বিসিডি কোড সাধারণত ৪, ৬, ৮ বিটের হতে পারে। তৰে ৮ বিটের বিসিডি কোডকে আদর্শ হিসেবে ধরা হয়।
সংখ্যাকে কম্পিউটারে কিংবা ইলেকট্রনিক সার্কিট দিয়ে ডিজিটাল প্রক্রিয়া করার জন্য সেগুলোকে বাইনারিতে রূপান্তর করে নিতে হয়। কিন্তু দশমিক সংখ্যার বহুল ব্যবহারের জন্য এর দশমিক রূপটি যতটুকু সম্ভব অক্ষুণ্ণ রেখে বাইনারি সংখ্যায় রূপান্তর করার জন্য বিসিডি (BCD: Binary Coded Decimal) কোডিং পদ্ধতি গ্রহণ করা হয়েছে।
এই পদ্ধতিতে একটি দশমিক সংখ্যার প্রত্যেকটি অঙ্ককে আলাদাভাবে চারটি বাইনারি বিট দিয়ে প্রকাশ করা হয়। যদিও চার বিটে 0 থেকে 15 এই 16টি সংখ্যা প্রকাশ করা সম্ভব, কিন্তু BCD কোডে 10 থেকে 15 পর্যন্ত এই বাড়তি ছয়টি সংখ্যা কখনোই ব্যবহার করা হয় না। দশমিক 10কে বাইনারিতে 1010 হিসেবে চার বিটে লেখা যায় কিন্তু বিসিডিতে 0001 0000 এই আট বিটের প্রয়োজন। নিচে BCD কোডের একটি উদাহরণ দেওয়া হলো :
উদাহরণ : 100100100110 বিসিডি কোডে লেখা একটি দশমিক সংখ্যা, সংখ্যাটি কত? উত্তর : 100100100110 বিটগুলোকে চারটি করে বিটে ভাগ করে প্রতি চার বিটের জন্য নির্ধারিত দশমিক অঙ্কটি বসাতে হবে।
আসকি (ASCII): ASCII-এর পূর্ণ অর্থ হলাে আমেরিকান স্ট্যান্ডার্ড কোড ফর ইনফরমেশন ইন্টারচেঞ্জ (American Standard Code for Information Interchange)। এটি মাইক্রো বা পার্সোনাল কম্পিউটারের জন্য বহুল ব্যবহৃত ও বর্তমানে প্রচলিত কম্পিউটার কোড। যেমন-A-এর আসকি কোড ৬৫ এবং a-এর আসকি কোড ৯৭।
ASCII হচ্ছে American Standard Code for Information Interchange কথাটির সংক্ষিপ্ত রূপ। এটি সাত বিটের একটি আলফানিউমেরিক কোড। এটি প্রাথমিকভাবে টেলিপ্রিন্টারে ব্যবহার করার জন্য তৈরি করা হয়েছিল এবং পরবর্তীকালে কম্পিউটারে এটি সমন্বয় করা হয়। সাত বিটের কোড হওয়ার কারণে এখানে সব মিলিয়ে 128টি চিহ্ন প্রকাশ করা যায়। এর প্রথম 32টি কোড যান্ত্রিক নিয়ন্ত্রণের জন্য ব্যবহার করা হয়, বাকি 96টি কোড ছোট হাতের, বড় হাতের ইংরেজি অক্ষর, সংখ্যা, যতিচিহ্ন, গাণিতিক চিহ্ন ইত্যাদির জন্য ব্যবহার করা হয়। টেবিলে অ্যাসকি কোডটি দেখানো হলো। ইদানীং 16, 32 কিংবা 64 বিট কম্পিউটারের প্রচলনের জন্য সাত বিটের ASCII- তে সীমাবদ্ধ থাকার প্রয়োজন নেই বলে অষ্টম বিট যুক্ত করে Extended ASCII- তে আরো 128টি চিহ্ন নানাভাবে ব্যবহার হলেও প্রকৃত ASCII বলতে এখনো মূল 128টি চিহ্নকেই বোঝানো হয়। টেবিলে অ্যাসকি কোডের প্রথম 32টি যান্ত্রিক নিয়ন্ত্রণের কোড (0-31) ছাড়া পরবর্তী 96টি (32-127) প্রতীক দেখানো হয়েছে।
ANSI কোড বলতে আমরা স্ট্যান্ডার্ড এনকোডিং বোধ করি, যা হল আমেরিকান ন্যাশনাল স্ট্যান্ডার্ড ইনস্টিটিউট (ANSI) দ্বারা প্রকাশিত একটি স্ট্যান্ডার্ড কোড। এটি ইউনিকোড না হলেও, একটি পুরাতন স্ট্যান্ডার্ড কোড হিসাবে ব্যবহৃত হয় যা অধিকাংশ সিস্টেমে সমর্থিত হয়।
ANSI কোড একটি 8-বিট কোডিং সিস্টেম যা ইংরেজি অক্ষর, সংখ্যা, প্রতীক এবং সাধারণ পাঁচালী চিহ্ন সহ অন্যান্য স্থানীয় ভাষার ক্যারেক্টারগুলি কোড করে।
ইউনিকোড হলো প্রাচীন মিশরীয় হায়ারোগ্লিফিক্স ভাষা থেকে শুরু করে বর্তমান সময়ের অক্ষর, বর্ণ, চিহ্ন, ইমোজি ইত্যাদির এনকোডিং পদ্ধতি। বর্তমানে পূর্বের এনকোডিং পদ্ধতি যেমন ASCII ও EBCDIC-কেও ইউনিকোডের আওতায় আনা হয়েছে। তথা পৃথিবীর প্রায় সব ভাষার লেখালেখির মাধ্যমগুলোকে ইউনিকোড পদ্ধতিতে সমন্বিত করা হয়েছে। ইউনিকোড ৩. UTF-32: এটি 32 বিটের (longs) একক। এখানে একটি অক্ষরকে নির্ধারিত 4 বাইটের মধ্যে উপস্থাপন করা হয়। এখানে দক্ষতার সাথে অক্ষরকে ব্যবহার করা হয়।
উল্লেখ থাকে যে, UTF-8 এবং UTF-16 হচ্ছে সবচেয়ে প্রচলিত পদ্ধতি। এর মাঝে ওয়েবসাইটে ব্যবহার করার জন্য UTF-8 অলিখিত স্ট্যান্ডার্ড হয়ে দাঁড়িয়েছে। কারণ এ ক্ষেত্রে প্রতিটি বর্ণের জন্য 4 বাইট স্থান সংরক্ষণ করা থাকলেও ব্যবহারের ক্ষেত্রে UTF-8 শুধুমাত্র যতগুলো বিট প্রয়োজন হয় ততটুকু ব্যবহার করে থাকে
ইবিসিডিআইসি (EBCDIC): ইবিসিডিআইসি (EBCDIC)-এর পূর্ণ অর্থ হচ্ছে এক্সটেন্ডেড বাইনারি কোডেড ডেসিমাল ইনফরমেশন কোড (Extended Binary Coded Decimal Information Code)। বিশ্ব বিখ্যাত আইবিএম কোম্পানী তাদের নিজস্ব কম্পিউটারে ব্যবহারের জন্য এই কোড উদ্ভাবন করেছে। এটি ৮ বিটের কোড, যার ডান দিকের ৪টি এবং ৪ বিটের মধ্যে মাঝের ৩ বিট হলাে জোনাল বিট এবং সর্ব বামের বিটটি প্যারাটি বিট হিসেবে ব্যবহৃত হয়।
বাইনারি সংখ্যা পদ্ধতি (Binary Digital System): সাধারণ ০ এবং ১ এ দুই সংখ্যার পদ্ধতিকে বলা হয় বাইনারি সংখ্যা পদ্ধতি। বাইনারির সবচেয়ে সহজ একটি পদ্ধতি এটা যার ভিত্তি হচ্ছে ২। এ পদ্ধতি বােঝার জন্য সবচেয়ে ভালাে একটি উদাহরণ হচ্ছে অডােমিটার ।।
সংখ্যা পদ্বতির রূপান্তর: ডেসিমেল, বাইনারি, অক্টাল ও হেক্সাডেসিমেল সংখ্যা পদ্ধতির মধ্যে এক সংখ্যা পদ্ধতির সংখ্যাকে অন্য আর এক সংখ্যা পদ্ধতিতে রূপান্তর করা যায়।
বাইনারি থেকে ডেসিমেল এ রূপান্তর:
বাইনারি সংখ্যা ভিত্তি দুই ভাই এর ঘাত বা শক্তি ২ দিয়ে হিসাব করতে হবে। যেমন- |
|
বাইনারি সংখ্যা। |
দশমিক সংখ্যা |
(১১০১১)২ |
=(১×২৪)+ (১×২৩)+ (০×২২)+ (১×২১)+ (১×২০) |
(১১০১১)২ = (২৭)১০
অক্টাল সংখ্যা পদ্ধতির ভিত্তি হল আট। অক্টাল সংখ্যা পদ্ধতিতে ৮টি সংখ্যা রয়েছে। এগুলি হল ০, ১, ২, ৩, ৪, ৫, ৬ এবং ৭ যার মানে এখানে সবচেয়ে বড় সংখ্যা হল ৭। এবং এর চেয়ে একটি বড় সংখ্যা গঠন করতে, আপনাকে দুই বা তার বেশি সংখ্যা বিন্যাস করতে হবে। নীচের টেবিলটি দশমিক সংখ্যার পাশাপাশি বাইনারি সমতুল্য সংখ্যাগুলি দেখায়।
কম্পিউটারে ব্যবহৃত আরেকটি সংখ্যা পদ্ধতিকে বলা হয় হেক্সাডেসিমেল সংখ্যা পদ্ধতি। এই নম্বর সিস্টেমটি কম্পিউটারের অভ্যন্তরীণ বাইনারি সংখ্যাগুলি প্রক্রিয়া করতেও ব্যবহৃত হয়। হেক্সাডেসিমেল হল একটি ১৬ ভিত্তিক সংখ্যা পদ্ধতি। এই পদ্ধতিতে ১৬টি চিহ্ন, প্রতীক বা সংখ্যা রয়েছে। এগুলি হল ০, ১, ২, ৩, ৪, ৫, ৬, ৭, ৮, ৯, A, B, C, D, E এবং F।
আমরা সাধারণত যে সংখ্যা পদ্ধতি ব্যবহার করি তাকে বলা হয় দশমিক সংখ্যা পদ্ধতি। কম্পিউটার যে সংখ্যা পদ্ধতি ব্যবহার করে তাকে বাইনারি সংখ্যা পদ্ধতি বলে। এরকম আরো অনেক সংখ্যা পদ্ধতি আছে।
নিচে কয়েকটি সংখ্যা পদ্ধতির নাম দেওয়া হল।
1. দশমিক সংখ্যা পদ্ধতি (০ থেকে ৯ পর্যন্ত)।
2. বাইনারি সংখ্যা পদ্ধতি (০ এবং ১)।
3. অক্টাল সংখ্যা পদ্ধতি (০ থেকে ৭ পর্যন্ত)।
4. হেক্স-ডেসিমাল সংখ্যা পদ্ধতি (০ থেকে ১৬ পর্যন্ত- ১, ২, ৩, ৪, ৫, ৬, ৭, ৮, ৯, ০, A, B, C, D, E এবং F)।
দশমিক সংখ্যা পদ্ধতি
আমরা জানি যে গণিত লেখা কিছু চিহ্ন বা সংখ্যার সাহায্যে করা হয়। যাইহোক, আমরা যে পদ্ধতিতে সংখ্যা লিখি তার উপর নির্ভর করে কতগুলো চিহ্ন বা সংখ্যা লেখা যাবে তা জানা যাই। আমরা সাধারণত যে পদ্ধতিতে সংখ্যা লিখি তাতে দশটি চিহ্ন বা অক্ষর ব্যবহার করা হয়, তাই একে দশমিক পদ্ধতি বলা হয়। অর্থাৎ, দশমিক পদ্ধতিতে ১, ২, ৩, ৪, ৫, ৬, ৭, ৮, ৯, ০ দশটি সংখ্যা থাকে। এই পদ্ধতিতে লেখা সংখ্যার ভিত্তি হল ১০।
বাইনারি সংখ্যা পদ্ধতি
০ এবং ১ এ দুই অঙ্কের সংখ্যা পদ্ধতিকে বাইনারি সংখ্যা পদ্ধতি বলা হয়। বাইনারি হল সবচেয়ে সহজ সংখ্যা পদ্ধতি। এর ভিত্তি হল ২। ০ এবং ১ চিহ্ন দুটিকে গণিতের ভাষায় সংখ্যা বলা হয়। মাত্র দুটি চিহ্ন বা সংখ্যা দিয়ে সংখ্যা লেখার এই পদ্ধতি বাইনারি পদ্ধতি নামে পরিচিত। তাই এই দুটি সংখ্যাকে বাইনারি সংখ্যা বা বাইনারি অংক বলা হয়। কম্পিউটার বাইনারি সংখ্যার সাহায্যে সব ধরনের গণনা বা যেকোনো কাজ করে থাকে। বাইনারি সংখ্যা দ্বারা গঠিত কম্পিউটার ভাষাকে বাইনারি ভাষা বলে।
অক্টাল সংখ্যা পদ্ধতি
বাইনারি সংখ্যাগুলিকে বেশ দীর্ঘ হয় তাই অক্টাল সংখ্যা পদ্ধতির উদ্ভব হয়েছে যা এটিকে সহজ এবং সংক্ষিপ্ত আকারে উপস্থাপন করে। এই নম্বর সিস্টেমটি কম্পিউটারের অভ্যন্তরীণ বাইনারি সংখ্যাগুলি প্রক্রিয়া করতে ব্যবহৃত হয়। অক্টাল সংখ্যা পদ্ধতির ভিত্তি হল আট। অক্টাল সংখ্যা পদ্ধতিতে ৮টি সংখ্যা রয়েছে। এগুলি হল ০, ১, ২, ৩, ৪, ৫, ৬ এবং ৭ যার মানে এখানে সবচেয়ে বড় সংখ্যা হল ৭।
হেক্সাডেসিমেল সংখ্যা পদ্ধতি
কম্পিউটারে ব্যবহৃত আরেকটি সংখ্যা পদ্ধতিকে বলা হয় হেক্সাডেসিমেল সংখ্যা পদ্ধতি। এই নম্বর সিস্টেমটি কম্পিউটারের অভ্যন্তরীণ বাইনারি সংখ্যাগুলি প্রক্রিয়া করতেও ব্যবহৃত হয়। হেক্সাডেসিমেল হল একটি ১৬ ভিত্তিক সংখ্যা পদ্ধতি। এই পদ্ধতিতে ১৬টি চিহ্ন, প্রতীক বা সংখ্যা রয়েছে। এগুলি হল ০, ১, ২, ৩, ৪, ৫, ৬, ৭, ৮, ৯, A, B, C, D, E এবং F। নীচের টেবিলটি দশমিক সংখ্যার পাশাপাশি হেক্সাডেসিমেল সমতুল্য সংখ্যাগুলিও দেখানো হলো৷
দশমিক থেকে বাইনারি রূপান্তর
আসুন এখন জানি কিভাবে একটি দশমিক সংখ্যাকে বাইনারি সংখ্যায় রূপান্তর করা যায়। দশমিককে বাইনারিতে রূপান্তর করার সবচেয়ে সহজ উপায় হল দশমিক সংখ্যাকে দুই দ্বারা ভাগ করা। এবং ভাগশেষগুলোকে পাশাপাশি সাজালেই সমতুল্য বাইনারি সংখ্যা পাওয়া যাবে। এখানে শেষ অবশিষ্ট সংখ্যাগুলোকে সর্বোচ্চ গুরুত্ব সংখ্যা হিসেবে নেওয়া হয়েছে। উদাহরণ: চলুন ২৫ (দশমিক) সংখ্যাটিকে বাইনারিতে রূপান্তর করি।
ফলাফল ১১০০১(পঁচিশ) বাইনারি
বাইনারি থেকে দশমিকে রূপান্তর
আমরা একটি সংখ্যার স্থানীয় মান দিয়ে গুণ করে তার মোট মান খুঁজে পেতে পারি। যেমন একক, দশক, শতাব্দী, স্থানীয় মান এইভাবে পাওয়া যাবে। তবে বাইনারি সংখ্যাগুলিকে তাদের স্থানীয় মানগুলিকে গুণ করে এবং প্রাপ্ত মানগুলি যোগ করে দশমিক সংখ্যায় রূপান্তর করা যেতে পারে।
নীচে সংখ্যাটি ১১০০১ (বাইনারী পঁচিশ) দশমিক সংখ্যায় রূপান্তরিত হয়েছে।
আপনি যদি একটি বাইনারি সংখ্যার একটি ভগ্নাংশকে দশমিক সংখ্যায় রূপান্তর করতে চান, আপনি ফলাফলটিকে তার স্থানীয় মান দ্বারা গুণ করতে পারেন এবং গুণফলটিকে যোগ করলে দশমিক সমতুল্য সংখ্যা পারেন। উদাহরণস্বরূপ, আসুন .১০১০ সংখ্যাটিকে দশমিক সংখ্যায় রূপান্তর করি।
দশমিক থেকে অক্টাল সংখ্যায় রূপান্তর
যেহেতু অক্টাল সংখ্যার ভিত্তি আট। সুতরাং যেকোনো দশমিক পূর্ণ সংখ্যাকে আট দ্বারা ভাগ করে অক্টাল সংখ্যায় রূপান্তর করা যেতে পারে। ভাগফল শূন্য না হওয়া পর্যন্ত পুনঃবন্টন করতে হবে এবং ভাগফলকে পাশাপাশি সাজিয়ে অক্টাল সংখ্যা পাওয়া যাবে। এখানে শেষ অংশটি সর্বোচ্চ গুক্তত্বের সংখ্যা হিসাবে বিবেচিত হবে। উদাহরণস্বরূপ, আসুন ৭৫ (দশমিক) সংখ্যাটিকে একটি অক্টাল সংখ্যায় রূপান্তর করি।
আপনি যদি একটি দশমিক ভগ্নাংশ সংখ্যাকে অক্টাল সংখ্যায় রূপান্তর করতে চান তবে আপনাকে সেই সংখ্যাটিকে আট দ্বারা গুণ করতে হবে এবং পূর্ণ সংখ্যাটি আলাদা করতে হবে। যদি গুণফলে ভগ্নাংশ থাকে তবে এটিকে আবার গুণ করতে হবে। সবশেষে, পূর্ণ সংখ্যাগুলো পাশাপাশি সাজানো হলে অক্টাল সংখ্যা পাওয়া যায়। এক্ষেত্রে প্রথম পূর্ণ সংখ্যাটিকে সর্বোচ্চ গুক্তত্বে সংখ্যা হিসেবে ধরা হয়। উদাহরণস্বরূপ, আসুন ০.২৫ কে একটি অক্টাল সংখ্যায় রূপান্তর করি।
অক্টাল থেকে দশমিক সংখ্যায় রূপান্তর
অক্টাল সংখ্যা একইভাবে তার স্থানীয় মান দ্বারা গুণিত করে এবং পরে গুণফল দ্বারা যোগ করলে দশমিক সংখ্যায় রূপান্তর হয়। নিচের উদাহরণটি লক্ষ্য করুন। ১১৩.১২ অক্টাল সংখ্যাটি দশমিক সংখ্যায় রূপান্তরিত।
দশমিক থেকে হেক্সাডেসিমেল সংখ্যায় রূপান্তর
হেক্সাডেসিমেল সংখ্যার ভিত্তি হল ১৬। একটি পূর্ণ দশমিক সংখ্যাকে একটি হেক্সাডেসিমেল সংখ্যায় রূপান্তর করতে এটিকে ১৬ দ্বারা ভাগ করতে হবে। ভাগফলটি শূন্য না হওয়া পর্যন্ত পুনরায় ভাগ করতে হবে। সবশেষে, ভাগশেষসমূহ শেষ থেকে শুরুতে অবশিষ্টাংশকে বাছাই করলে হেক্সাডেসিমেল সংখ্যা পাওয়া যায়৷ ৫৫ দশমিক সংখ্যাকে হেক্সাডেসিমেল সংখ্যায় রূপান্তর করা যাক।
ফলাফল: ৩৭ (পঞ্চান্ন হেক্সাডেসিমেল সংখ্যা পদ্ধতি)।
আপনি যদি একটি দশমিক ভগ্নাংশ সংখ্যাকে হেক্সাডেসিমেল সংখ্যায় রূপান্তর করতে চান তবে আপনাকে পুনঃ পুনঃ ১৬ দ্বারা ভগ্নাংশকে গুণ করতে হবে। গুণফল থেকে প্রাপ্ত পূর্ণসংখ্যাগুলি পাশাপাশি সাজিয়ে হেক্সাডেসিমেল সংখ্যা পাওয়া যায়। উদাহরণস্বরূপ, আসুন আমরা ০.৫০ সংখ্যাটিকে একটি হেক্সাডেসিমেল সংখ্যায় রূপান্তর করি।
ফলাফল: ০.৮ হেক্সাডেসিমেল
হেক্সাডেসিমেল থেকে দশমিক সংখ্যায় রূপান্তর
হেক্সাডেসিমেল সংখ্যার ভিত্তি হল ১৬। আপনি যদি একটি হেক্সাডেসিমেল সংখ্যাকে দশমিক সংখ্যায় রূপান্তর করতে চান, আপনি সেই সংখ্যাটিকে তার স্থানীয় মান দ্বারা গুণ করতে পারেন এবং প্রাপ্ত সংখ্যাগুলি যোগ করলে দশমিক সংখ্যা পাবেন।
A২.৮ কে হেক্সাডেসিমেল সংখ্যাকে দশমিক সংখ্যায় রূপান্তর।
যে পদ্ধতি সংখ্যা গণনা করা হয় বা প্রকাশ করা হয়, তাকে সংখ্যা পদ্ধতি বলে। এ সকল সংখ্যাকে বিভিন্ন গাণিতিক প্রক্রিয়ার মাধ্যমে প্রয়ােজনীয় গণনার কাজ করা হয়।
প্রকারভেদঃ
১. ডেসিমেল বা দশমিক সংখ্যা পদ্ধতি
২. বাইনারি সংখ্যা পদ্ধতি
৩. অক্টাল সংখ্যা পদ্ধতি
৪. হেক্সাডেসিমেল সংখ্যা পদ্ধতি
নাম |
বৈশিষ্ট্য |
ডেসিমেল বা দশমিক সংখ্যা |
দশমিক সংখ্যা পদ্ধতিতে ০,১,২,৩,৪,৫,৬,৭,৮ এবং ৯ এই দশটি প্রতীক দিয়ে সব ধরণের সংখ্যা গঠন করা হয়। দশটি প্রতীক বা অংক ব্যবহার করা হয় বলে এ সংখ্যা পদ্ধতিকে বলা হয় দশমিক সংখ্যা পদ্ধতি। এ সংখ্যা পদ্ধতির ভিত্তি হচ্ছে ১০। *দশমিক পদ্ধতির ক্ষেত্রে একক, দশক, শতক এভাবে কোন সংখ্যার মান নির্ণয় করতে হয়। পূর্ণ দশমিক সংখ্যার স্থানীয় মান নির্ণয় করতে সংখ্যার ডানদিক থেকে প্রথম ঘরের মান ১০° (=১) , দ্বিতীয় ঘরের মান ১০১ (=১০), তৃতীয় ঘরের মান ১০২ (=১০০) , চতুর্থ ঘরের মান ১০৩(=১০০০) |
বাইনারি সংখ্যা পদ্ধতি |
শূন্য (০) এবং (১) এর অন্তহীন সমবায়ে গঠিত বাইনারী সিস্টেম। বাইনারীতে কেবল দুটি ডিজিট বা প্রতীক ব্যবহৃত হয়। সপ্তদশ শতাব্দীর প্রথমভাগে টমাস হ্যারিয়ট প্রথম বাইনারী সংখ্যা কাজে লাগান। |
অক্টাল সংখ্যা পদ্ধতি |
যে সকল সংখ্যা যে সংখ্যা পদ্ধতিতে আটটি অংক বা চিহ্ন ব্যবহার করা হয় তাকে অক্টাল সংখ্যা পদ্ধতি বলে। |
হেক্সাডেসিমেল সংখ্যা পদ্ধতি। |
যে সংখ্যা পদ্ধতিতে ষােলটি অংক বা চিহ্ন ব্যবহার করা হয় তাকে অকাল। +এ পদ্ধতিতে ব্যবহৃত অংকগুলাে হলাে ০, ১, ২, ৩, ৪, ৫, ৬, ৭, ৮, ৯, A, B, C, D, E, F |
Read more